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Abstract. The one-loop correction to the Maxwell Lagrangian with constant external field 
is obtained by taking into account the anomalous magnetic and electric moments of the 
electron. The imaginary part of the effective Lagrangian is found. It defines the probability 
of creating electron-positron pairs. The asymptotics of the effective Lagrangian for weak, 
(H, E <c m 2 / e ) ,  and very strong, (H, E >> m 2 / e ) ,  fields taking into account the dependence 
of anomalous moments of the electron on E, H are studied. 

1. Introduction 

It is known that taking the radiative corrections into account changes the value of the 
electron magnetic moment po= e / 2 m i  in Dirac's theory. To first order in the fine 
structure constant, a, the radiative corrections yield the anomalous magnetic moment 
( A M M ) ,  p i  = p0a/27r  (Schwinger 1948). To second order in a, the AMM of the electron 
begins to depend on the external field (Newton 1954). This dependence becomes 
dominant for strong fields, ( E ,  H - m 2 / e ) ,  when the AMM differs essentially from the 
Schwinger value (Ritus 1978). 

The AMM of the electron, p l y  can phenomenologically be taken into account in 
QED by adding the additional interaction of the Pauli form pi&r,+vFp+ where Fpy is 
the electromagnetic field tensor. 

The AMM of the electron results in the corrections to the effective Schwinger 
Lagrangian (Schwinger 1951). These corrections for the uniform magnetic field, H, 
were found by Dittrich (1978). 

The discovery of K-meson decays (Christenson et a1 1964) makes us doubt the CP 
invariance hypothesis of physics equations (Landau 1957) because this decay is forbid- 
den if CP parity is conserved. Breaking CP invariance leads to the conclusion that 
elementary particles can have electric moments. From this point of view the search 
for electric moments of particles and, if they exist, the study of their consequences is 
of fundamental importance. Note that taking into consideration the radiative correc- 
tions in QED with an intense constant electromagnetic field results in an anomalous 
electric moment (AEM) of the electron (Ritus 1978) if (E ,  H) # 0. The AEM of the 
electron, p2, can also phenomenologically be taken into account in QED by adding an 
additional interaction of the form p Z ~ c r p y F ~ y ~  where 2 F z ,  = E , , , , ~ ~ F ~ ~ .  

t The system of units in which h = c = 1 is used. Dirac's matrices y,, satisfy the relations {y,,, yv} = 27,,- 
7,,,,=diag(l, -1, -1, -11, 2uWv =i[v,,, ~ " 1 ,  ~ ~ = i y ~ y , y , y ~ ,  Y:= yS, aPbP = a,bo-a,b,, { A ,  B ) =  AB+ BA, 
[A, B ]  = AB - BA. 
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The aim of this paper is to find and study the one-loop correction to the Maxwell 
Lagrangian for a constant electromagnetic field taking into account the AMM and AEM 

of the electron. Our treatment is based on Schwinger’s coordinate-space and proper- 
time formalism (Schwinger 1951). 

2. The effective Lagrangian 

Our starting point is the Green function equation 

($x) + p& - m)G(x, x’) = S(x - x’) 
A 

$x, = Y,P,(X), P , (X)  = P, - eA,(x), @ = UfiCrv@,” (2.1) 

2QP, = FPy cos S + FZy sin 6, tan S = cLZlP.1, p = ( p : +  PCL:)l’* 

in which the AMM, pl and AEM, p2, of the electron are phenomenologically taken into 
account. Later on the case of an arbitrary constant electromagnetic field is considered 
so that the field invariants 

S = i F  F =f(H*-E2), % = $F*,,F,, = ( E ,  H )  

might be arbitrary constants. 
Equation (2.1) will be considered as the matrix equation 

( $ + p & - m ) G = l  (2.2) 

(xlx‘) = S(x -x‘), 

( x l P + p & - m l x ~ ) =  (P (x )+p&-m)S(x -x ’ ) .  

written in a non-physical Hilbert space of the abstract vectors, Ix). Here 

dxlx)(xl= 1, G(x, x‘) =(xjGlx‘) 5 
With the aid of the Green function (2.1) the one-loop correction, T ( x ) ,  to the Maxwell 
Lagrangian is defined by the relations (Schwinger 1951) 

SS, = ie dx  tr SA(x)G(x, x)  (2.3) 

where tr indicates the diagonal summation in spinor space. Equation (2.3) in the 
matrix form is written in the following way 

5 S1= d x T ( x ) ,  5 
SS1 = ie Tr SAG. (2.4) 

Here the trace Tr is taken in the functional sense. From (2.2), (2.3) and (2.4) in the 
standard way we obtain 

SI = jOm exp( -im2s) Tr exp(iHs) (2.5) 

up to an arbitrary additive constant and, therefore, 

exp(-im2s) tr(xlexp(iHs)lx). (2.6) 

H = P 2 - $ & + p { F , & } + p 2 & * ,  F = u,,,FpY. (2.7) 

Here the following notations are introduced 
A 
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Omitting the details of the calculations of the matrix element (xlexp(iHs)lx’) we shall 
give the final expression for its diagonal part 

(2.8) - Sp In[ (eFs)-’ sinh( eFs)] 

where F denotes the matrix FFY) Sp indicates the diagonal summation over vector 
indices of the matrices depending on F. Note that 

&* = 2~~ + 2i@*@y5, 

Q2 = 9 cos 26 + 3 sin 26, 

{ y, &}’ = 160’ 

@*@ = % cos 26 - 9 sin 26. 
Then when calculating matrix traces in (2.6) and (2.8) suffice it to notice that the matrix 
F has the eigenvalues 

*iJ2 [ ( ~ + i ~ ) ” ~ + ( ~ - i ~ ) ” ’ l ,  *iJ2[(9+i”)”’-(S-i%)’’’] 

and the eigenvalues of the matrix 4e~-2 ip2@*@ys equal 

* e h  (9+i%)1’2-2ip2@*@, * e J 2  (9- i~1)”’+2ip~0*@‘.  

With the substitution s + -is in (2.6) we find the following expression for .Y(x) 

Re cosh( eXs) 
Im cosh( eXs) 

(es)*% c0s(2p2@*@s) 

- 1 -(es)’% sin(2p2@*@s) (2.9) 

where X = h  ( 9 + i % ) ” ’  and the additive constant in (2.9) is chosen so that when 

The Lagrangian .Y( x )  (2.9) contains logarithmic divergences and on subtracting 
9= %=O*T(x)=O. 

them we obtain the final expression for T ( x )  

- 1 - i ( e s ) 2 9 +  (p’s)’(@*@)’ - (es)2% sin(2p2@*@s) . (2.10) 

If 9 and % do not vanish simultaneously, we may pass to the Lorenz frame in which 
electric and magnetic fields are parallel to each other 

1 
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From (2.10) when p = 0 the well known result follows (Schwinger 1951) for the effective 
Lagrangian 

1 Re cosh( e X s )  
8 7 ~ ’  ( Im cosh( eXs)  ~ ( x )  = -- lom $ exp(-m2s) ( e s ) 2 9  - 1 

From (2.1 1) for a constant pure magnetic field, ( E  + 0), we have the form 

exp{ -[ m2 + ( p ;  - p; )  ~ ’ 1 s )  

x [ ( e H s )  cos(2p1p2H2s)  coth(eHs)- 1 -i(eHs)’+ (p1p2H2s)2]  (2.12) 

which when p2 = 0 coincides with that of Dittrich (1978) 

x [ ( e H s )  coth(eHs) - 1 - f ( e H s ) ’ ] .  (2.13) 

Integral (2.11) when E f 0 has the poles at the points S,  = m / l e / E .  On integrating 
these poles should be passed round from above and we have the following contribution 
to the imaginary part of 2 

2 1 m 2 = -  

(2.14) 

which defines the probability of electron-positron pair creation per unit time and per 
unit volume. In particular, when H + 0 and p2 = 0 from (2.14) we have 

(2.15) 

and hence 

Im 2111=0,H=0< Im 2e/F,=o,H=o. 

We see that the AMM of the electron leads to the increase of pair creation probability 
for a constant pure electric field. From (2.15) when p,  = 0 the famous result obtained 
by Schwinger follows (Schwinger 1951). 

3. Asymptotics of the effective Lagrangian 

In this section we want to study limiting cases of the effective Lagrangian (2.10) or 
(2.11) for weak and very strong fields. 

For weak fields, ( E  << Eo, H << H,,, Eo, Ho= m2/le l )  expression (2.10) admits 
asymptotic expansion in the parameters, E /  Eo, H /  Ho. In the first approximation 

the field invariants, 9 and 9, are present quadratically. In (3.1) the first term is the 
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well known Heisenberg-Euler Lagrangian (Heisenberg and Euler 1936). As in modern 
experiments the electric moment, p2, is not discovered, then, in any case, for weak 
fields p2<< pI. Taking into account that for weak fields p l  = poa/25r, po= e/2m from 
(3.1) we obtain the modified Heisenberg-Euler Lagrangian 

2= 360r2m e4 4[4Bi+(7+20$)%2] (3.2) 

caused by the AMM of the electron. 
Consider now asymptotics of the effective Lagrangian (2.11) for very strong fields. 
Let us confine ourselves first to the particular case for the effective Lagrangian 

(2.13) which will be written in the form 

(3.3) 
1 

X 
p (x )  = 7 [ X  coth x - 1 -;X’] 

by changing the variables le1 Hs = x. When p ,  = 0 and H >> Ho from (3.3) to a logarithmic 
accuracy we obtain well known asymptotics for the effective Lagrangian (Akhieser 
and Bereztetsky 1959) 

(3.4) 

When studying the asymptotics of (3.3) one should take into account the AMM depen- 
dence of the electron on H. This dependence for very strong fields, H >> Ho, has the 
form in the first approximatioii in ,y >> 1 (Ritus 1978) 

p 1 = I L o -  8 1 x2’” (3.5) 

where r ( f )  is the value of the gamma-function at the point f ,  pL is the electron 
momentum to the direction perpendicular to the vector H. From (3.3) and (3.5) when 
H >> Ho to a logarithmic accuracy we have 

(3.6) 

where for p ,  one should take expression (3.5). The second term in (3.6) can be 
considered as the contribution to the asymptotics (3.4) due to the dependence of p1 
on a constant magnetic field. This addition 

for H >> Ho has a negative sign so that Yl[ HI > Z2[ H I .  
Note that taking into consideration the AMM dependence on an external field for 

very strong fields on studying the effective Lagrangian asymptotics is fundamentally 
important. Indeed, if one neglects the dependence of p1 on H,  the effective Lagrangian 
asymptotics when H >> Ho has the form 

e4 I el 
g2[ HI = 360r2p?+’( z)‘ (3.7) 
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When obtaining (3.7) it was taken into account that ( ~ ( 0 )  = 0, (~ ’ (0 )  = -&. Expression 
(3.7) differs in essence from (3.6). In view of the asymptotics (3.6) and (3.7) obtained 
here one should say that the study of the effective Lagrangian asymptotics without 
taking into account the dependence of pl on H was done by Dittrich (1978) incorrectly 
and the asymptotics obtained there do not have the form (3.7). This is connected with 
the use of the expansions in the parameter, p : H / l e l ,  which for very strong magnetic 
field, H, is not small if p,  does not depend on H. 

For a constant electric field, E ( H + O ) ,  the effective Lagrangian (2.11) has the 
following form 

by changing the variable le(Es = x. When E >> Eo to a logarithmic accuracy for the real 
part of 2 [ E ]  one obtains (Akhieser and Bereztetsky 1959) 

if p1 = 0. Expression (3.9) results in the negative addition to the energy density, 
eo= E 2 / 8 v ,  so that for a very strong electric field, E, the energy density, E ,  equals 

This density vanishes when 

E = E,,, = Eo exp(37rla) - 10560E,. 

On these grounds it was concluded that (Greenman and Rohrlich 1973) E,,, is the 
maximum electrostatic field strength in the universe. This conclusion should be 
considered groundless within the framework of QED because of the well known 
‘zero-charge’ situation. The asymptotics over very strong external field can be estab- 
lished only in the interval (Voronov and Kryuchkov 1979) 

1 << E / E o < <  exp(37rla) (3.10) 

and, hence, any conclusions about an asymptotic behaviour of physics quantities 
beyond the interval (3.10) are not correct. Note that expression (3.8) makes sense if 

p:E2< m2.  (3.11) 

Consider condition (3.11) for a very strong electric field, E >> Eo and take into account 
the dependence of p1 on E (Ritus 1978) 

This accounts for the fact that condition (3 .11)  may break when 

(3.12) 

For a very strong electric field, E >>Eo the AMM of the electron equals twice the 
Schwinger value (Ritus 1978) 
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P1= Poff I r, P I = O  (3.13) 

and, hence, condition (3.1 1) breaks when 

E =E,, ,= E 0 2 r / a  - 103E0. 

For a constant electric field, E, the asymptotic behaviour of the effective Lagrangian 
taking into account the AMM of the electron can be established in the interval 

1 << E l  Eo < 2 r / a  <( exp(3r Ia) .  (3.14) 

The electric field strength, E,,, = 2 r E o / a ,  should be considered as a maximum value 
when phenomenological consideration of the electron AMM in QED is contradictory. 

When fulfilling condition (3.11) for a very strong electric field we obtain for the 
real part of 2 [ E ]  (3.8) 

R e Y 2 [ E ] = - -  

Note that the condition p2=0  used above for studying the effective Lagrangian 
asymptotics for very strong magnetic ( E  + 0) and electric ( H  + 0) fields does not limit 
our consideration if the AEM of the electron is caused solely by radiative corrections 
due to an external field. Indeed, in this case k2 = 0 because (8 = 0 (Ritus 1978). For x >> 1 

the AEM of the electron behaves in the following way (Ritus 1978) 

5a EH 
P2 = Po - ( - ) x - 2  In( &), In Y = c 

3~ EoHo 

(3.15) 

(3.16) 

where C is Euler’s constant, C = 0.577. 
From (3.14) and (3.15) it follows that for very strong fields the AEM of the electron 

may take a value visibly different from zero only when H - E. In view of this let us 
consider the case when E = H. Then from (2.11) we obtain 

x [x2 cos(Bx) coth x cot x - 1 + B2x2 - x2 sin( Bx)]. (3.17) 

Here the notation is introduced: 

A = -  ” [  E 1+, PLr2(.32], - B = 2 E [ ( 2 ) 2 - ( 2 ) 2 ] .  EO (3.18) 

From (3.12) (or (3.13)) and (3.16) it follows that in the whole region of the values, 
E l  Eo, from the interval (3.14) the parameters A, IBI << 1. Consequently, the asymptotic 
behaviour of the effective Lagrangian for very strong fields and satisfying condition 
(3.14) is defined from (3.17) at small values of the parameters, A, B. In particular, 
from (3.17) when p,  = p2 = 0 we obtain the asymptotics of the Schwinger Lagrangian 
real part for the fields, E = H, E >>Eo 
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In the general case the asymptotics of the real part (3.17) to a logarithmic accuracy 
has the form 

e 2 E 2  
1 6 n 2  

Re Y 2 [ E  = HI =- (A2-  B 2 )  In 

where for the quantities, A, B, one should take the expression (3.18) and for p1 and p2 
expressions (3.12) (or (3.13)) and (3.16) respectively. 

4. Conclusion 

In this paper the exact expression for the one-loop effective Lagrangian in QED taking 
into consideration the anomalous moments of the electron is obtained. It is established 
there there is a modification of the well known Heisenberg-Euler Lagrangian for weak 
fields. The imaginary part of the effective Lagrangian which defines the probability 
of pair creation is found. The asymptotics of the effective Lagrangian for very strong 
fields are found. The asymptotic calculations point to the importance of taking into 
account the dependence of anomalous moments of the electron on external fields. The 
region of field strength values in which the obtained asymptotic expressions for the 
effective Lagrangian are true is found. 
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